Math 1A - Calculus - Chapter 3 Test - Spring '08
Name \qquad
Show your work for credit. Do not use a calculator.

1. On what interval is the function $f(x)=7-3 e^{x}+5 x$ increasing? Write your answer in interval notation.
2. Consider the parabola described by $y=5 x-x^{2}$
a. Write an equation for the tangent line at $(1,4)$.
b. Where does the normal line at $(1,4)$ cross the parabola again?
c. Illustrate your solution to part (b) by sketch a graph for the parabola and normal line and two points of intersection.
3. If $u(2)=7, v(2)=3, u^{\prime}(2)=-3$, and $v^{\prime}(2)=2$, find the following numbers:
a. $(u v)^{\prime}(2)$
b. $\left(u^{2} v\right)^{\prime}(2)$
4. Consider the function $f(x)=x^{2} e^{x}$
a. Write the second derivative $f^{\prime \prime}(x)$ as a product of e^{x} with some quadratic function.
b. Over what interval(s) is $f(x)$ concave down?
5. A ball is given a push so that it has an initial velocity of $3 \mathrm{~m} / \mathrm{s}$ down a certain inclined plane, and the distance it has rolled after t seconds is $s(t)=8 t+3 t^{2}$.
a. Find the velocity after 2 seconds.
b. How long does it take the velocity to reach $68 \mathrm{~m} / \mathrm{s}$?
6. Find an equation for the tangent line to the curve $y=e^{2 x} \sin (3 x)$ at $(0,0)$.
7. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it oscillates vertically. The equation of motion is
$s(t)=5 \cos 2 t+\sin 2 t$, where s is measured in centimeters and t in seconds. (We take the positive direction to be downward.)
a. Find the velocity at time t.
b. Find the acceleration at time $t=\frac{\pi}{6}$
8. Find an equation for the line tangent to $y=e^{-x} \cos (2 x)$ at $(0,1)$.
9. Find $\frac{d^{19}}{d x^{19}} y$ for $y=x e^{x}$ by computing the first 8 derivatives and then following the pattern.
10. If $f(x)=\sin 3 x \sqrt{1-2 \sin ^{2} 3 x}$ find $f^{\prime}(x)$
11. Find an equation for the line tangent to $3\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)$ at $(4,2)$
12. Let $f(x)=\frac{\ln x}{x^{5}}$
a. Find $f^{\prime}(x)$
b. Find $f^{\prime \prime}(x)$
13. Use logarithmic differentiation to find $\frac{d}{d x} x^{10 \cos x}$
14. Use a linear approximation to estimate $\frac{1}{99996}$.
15. On what interval is the function $f(x)=7-3 e^{x}+5 x$ increasing? Write your answer in interval notation.
SOLN: The function is increasing where the derivative is positive.
$f^{\prime}(x)=-3 e^{x}+5>0 \Leftrightarrow e^{x}<\frac{5}{3} \Leftrightarrow x<\ln \frac{5}{3}$ so the function is increasing on $\left(-\infty, \ln \left(\frac{5}{3}\right)\right)$.
16. Consider the parabola described by $y=5 x-x^{2}$
a. Write an equation for the tangent line at $(1,4)$.

SOLN: The derivative function is $y^{\prime}=5-2 x$ so the slope at $x=1$ is $m=3$ and the equation of the tangent line is $y=4+3(x-1)=3 x+1$
b. Where does the normal line at $(1,4)$ cross the parabola again?

SOLN: The slope of the normal line is $m_{\perp}=-\frac{1}{3}$ so the equation is $y=4-\frac{1}{3}(x-1)=-\frac{1}{3} x+\frac{13}{3}$.
At the points of intersection we have
$5 x-x^{2}=-\frac{1}{3} x+\frac{13}{3} \Leftrightarrow 3 x^{2}-16 x+13=0 \Leftrightarrow(x-1)(3 x-13)=0$
So the x-coordinate of the other point is $x=\frac{13}{3}$. The y coordinate there is $y=\frac{26}{9}$.
c. Illustrate your solution to part (b) by sketch a graph for the parabola and normal line and two points of intersection.
SOLN: The x-intercepts of the parabola are at $x=0$ and $x=5$ and it opens downward from a vertex at $\left(\frac{5}{2}, \frac{25}{4}\right)$:
3. If $u(2)=7, v(2)=3, u^{\prime}(2)=-3$, and $v^{\prime}(2)=2$, find the following numbers:
a. $(u v)^{\prime}(2)$ SOLN:

$$
u(2) v^{\prime}(2)+u^{\prime}(2) v(2)=7(2)+(-3)(3)=5
$$

b. $\left(u^{2} v\right)^{\prime}(2)=(u(2))^{2} v^{\prime}(2)+2(u(2)) u^{\prime}(2) v(2)=7^{2} 2+2(7)(-3)(3)=98-126=-28$
4. Consider the function $f(x)=x^{2} e^{x}$
a. Write the second derivative $f^{\prime \prime}(x)$ as a product of e^{x} with some quadratic function.

SOLN: $f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}=\left(x^{2}+2 x\right) e^{x}$ so $f^{\prime \prime}(x)=\left(x^{2}+2 x\right) e^{x}+(2 x+2) e^{x}=\left(x^{2}+4 x+2\right) e^{x}$
b. Over what interval(s) is $f(x)$ concave down?

SOLN: f is concave down if $f^{\prime \prime}(x)<0 \Leftrightarrow\left(x^{2}+4 x+2\right) e^{x}<0 \Leftrightarrow x^{2}+4 x+2<0 \Leftrightarrow(x+2)^{2}-2<0$

$$
\Leftrightarrow-2-\sqrt{2}<x<-2+\sqrt{2} \Leftrightarrow x \in(-2-\sqrt{2},-2+\sqrt{2})
$$

5. A ball is given a push so that it has an initial velocity of $8 \mathrm{~m} / \mathrm{s}$ down a certain inclined plane, and the distance it has rolled after t seconds is $s(t)=8 t+3 t^{2}$.
a. Find the velocity after 2 seconds.

SOLN: $s^{\prime}(2)=8+\left.6 t\right|_{t=2}=20 \mathrm{~m} / \mathrm{s}$
b. How long does it take the velocity to reach $68 \mathrm{~m} / \mathrm{s}$?

SOLN: $s^{\prime}(2)=8+6 t=68 \Leftrightarrow t=10 \mathrm{sec}$
6. Find an equation for the tangent line to the curve $y=e^{2 x} \sin (3 x)$ at $(0,0)$.

SOLN: $y^{\prime}=\left(e^{2 x}\right)^{\prime} \sin (3 x)+e^{2 x}(\sin (3 x))^{\prime}=2 e^{2 x} \sin (3 x)+3 e^{2 x} \cos (3 x)$
So the slope of the tangent line is $m=0+3=3$ and the equation is $y=3 x$.
7. Find an equation for the line tangent to $y=e^{-x} \cos (2 x)$ at $(0,1)$.

SOLN: $y^{\prime}=\left(e^{-x}\right)^{\prime} \cos (2 x)+\left(e^{-x}\right)(\cos (2 x))^{\prime}=-e^{-x} \cos (2 x)-2 e^{-x} \sin (2 x)$
At $x=0$, the slope is $-1+0=-1$. Thus the tangent line is $y=1-x$.
8. If $f(x)=\sin 3 x \sqrt{1-2 \sin ^{2} 3 x}$ find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =(\sin 3 x)^{\prime} \sqrt{1-2 \sin ^{2} 3 x}+\sin 3 x\left(\sqrt{1-2 \sin ^{2} 3 x}\right)^{\prime} \\
& =3 \cos 3 x \sqrt{1-2 \sin ^{2} 3 x}-\frac{\sin 3 x(3(4) \sin 3 x \cos 3 x)}{2 \sqrt{1-2 \sin ^{2} 3 x}}
\end{aligned}
$$

SOLN:

$$
\begin{aligned}
& =\frac{3 \cos 3 x\left(1-2 \sin ^{2} 3 x\right)-6 \sin ^{2} 3 x \cos 3 x}{\sqrt{1-2 \sin ^{2} 3 x}} \\
& =\frac{3 \cos 3 x\left(1-4 \sin ^{2} 3 x\right)}{\sqrt{1-2 \sin ^{2} 3 x}}
\end{aligned}
$$

9. Find an equation for the line tangent to $3\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)$ at $(4,2)$

SOLN: Equating derivatives of left and right sides, $6\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=100\left(2 x-2 y y^{\prime}\right)$ and then plugging in the coordinates,
$6(16+4)\left(8+4 y^{\prime}\right)=100\left(8-4 y^{\prime}\right) \Leftrightarrow 6\left(2+y^{\prime}\right)=5\left(2-y^{\prime}\right) \Leftrightarrow 11 y^{\prime}=-2 \Leftrightarrow y^{\prime}=-\frac{2}{11}$
Thus the equation of the line is $y=2-\frac{2}{11}(x-4)=\frac{30}{11}-\frac{2}{11} x$
10. Let $f(x)=\frac{\ln x}{x^{5}}$
a. Find $f^{\prime}(x): f(x)=x^{-5} \ln x \Rightarrow f^{\prime}(x)=\left(x^{-5}\right)^{\prime} \ln x+x^{-5}(\ln x)^{\prime}=-5 x^{-6} \ln x+x^{-6}=x^{-6}(1-5 \ln x)$
b. Find $f^{\prime \prime}(x)=x^{-6}(1-5 \ln x)^{\prime}+\left(x^{-6}\right)^{\prime}(1-5 \ln x)=-5 x^{-7}-6 x^{-7}(1-5 \ln x)=-x^{-7}(11-30 \ln x)$
11. Use logarithmic differentiation to find $\frac{d}{d x} x^{10 \cos x}$

SOLN: $\ln y=10 \cos x \ln x \Rightarrow \frac{y^{\prime}}{y}=\frac{10 \cos x}{x}-10 \sin x \ln x \Rightarrow y^{\prime}=x^{10 \cos x}\left(\frac{10 \cos x}{x}-10 \sin x \ln x\right)$

$$
=(10 \cos x) x^{10 \cos x-1}-10 \sin x(\ln x) x^{10 \cos x}
$$

12. Use a linear approximation to estimate $\frac{1}{99996}$.

SOLN: $f(x)=\frac{1}{x} \approx f(100000)+f^{\prime}(100000)(x-100000)$

$$
f(99996) \approx 10^{-5}-10^{-10}(-4)=1.00004 \times 10^{-5}
$$

Note this is closer to $1.00004000160006400256010240409616384655386215448617944717788 \cdot 10^{-5}$

